Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,3,4-Trihydroxybenzaldehyde

Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 15 July 2008; accepted 15 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.054; wR factor = 0.132; data-to-parameter ratio = 6.9.

The title compound, $C_7H_6O_4$, crystallizes with two independent molecules in the asymmetric unit. In both molecules, the 2-hydroxy group is bound *via* intramolecular hydrogen bonds to the aldehyde group. The molecules interact through $O-H \cdots O$ hydrogen bonds to form a three-dimensional network structure; each hydroxy group serves as a donor to only one acceptor atom.

Related literature

For some references on hydroxy-substituted benzaldehydes, see: Kretz *et al.* (2007); Ng (2005). For the crystal structures of Schiff base derivatives of 2,3,4-trihydroxysalicylaldehyde, see: Petek *et al.* (2006); Sun *et al.* (2007).

b = 24.006 (2) Å

c = 14.8965 (9) Å

V = 1292.9 (2) Å³

 $\beta = 93.524(5)^{\circ}$

Experimental

Crystal data
$C_7H_6O_4$
$M_r = 154.12$
Monoclinic, Cc
a = 3.6222 (3) Å

Z = 8Mo $K\alpha$ radiation $\mu = 0.13 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: none 5464 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.132$ S = 1.011491 reflections 217 parameters 8 restraints

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2···O1	0.84 (1)	1.99 (5)	2.631 (5)	133 (6)
$O3-H3\cdots O7^{i}$	0.84(1)	2.04 (3)	2.816 (5)	153 (6)
$O4-H4\cdots O1^{ii}$	0.84 (1)	1.90 (3)	2.701 (5)	159 (6)
O6−H6···O5	0.84(1)	1.87 (3)	2.653 (5)	154 (6)
O7−H7···O2	0.84(1)	2.02 (3)	2.772 (5)	149 (6)
$O8-H8\cdots O5^{iii}$	0.84 (1)	1.86 (2)	2.679 (5)	162 (7)

Symmetry codes: (i) x - 1, y, z; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $x - 1, -y, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

I thank the University of Malaya for supporting this study through the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2748).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kretz, T., Lerner, H.-W. & Bolte, M. (2007). Acta Cryst. E63, 04673.
- Ng, S. W. (2005). Acta Cryst. E61, o2301-o2302.
- Petek, H., Albayrak, Ç., Ağar, E. & Kalkan, H. (2006). Acta Cryst. E62, o3685– o3687.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Y.-F., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007). Acta Cryst. E63, o2522– o2523.
- Westrip, S. P. (2008). publCIF. In preparation.

1491 independent reflections

1087 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

T = 100 (2) K $0.30 \times 0.03 \times 0.03 \text{ mm}$

 $R_{\rm int} = 0.088$

refinement $\Delta \rho_{\text{max}} = 0.30 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.32$ e Å⁻³

supplementary materials

Acta Cryst. (2008). E64, o1565 [doi:10.1107/S1600536808022241]

2,3,4-Trihydroxybenzaldehyde

S. W. Ng

Comment

2,3,4-Trihydroxybenzaldehyde condenses with primary amines to afford Schiff bases. The crystal structures of only few such Schiff bases have been reported. The 2-fluoroaniline derivative exists as a zwitterion as the hydrogen atom of the 2-hydroxy substituent is transferred to the imino nitrogen atom (Petek *et al.*, 2006). On the other hand, the antipyrine derivative has the expected neutral structure (Sun *et al.*, 2007). Although there are several structural studies on hydroxy-substituted benzaldehydes (Kretz *et al.*, 2007; Ng, 2005), the structure of 2,3,4-trihydroxybenzaldehyde has not been reported.

2,3,4-Trihydroxybenzaldehyde (Scheme I) crystallizes with two independent molecules in the asymmetric unit. In both, the 2-hydroxy group is hydrogen-bonded to the aldehyde group via an intramolecular hydrogen bond (Fig. 1). The molecules interact through O–H…O hydrogen bonds to form a three-dimensional network structure; each hydroxy group serves as donor to only one acceptor atom.

Experimental

Commercially available 2,3,4-trihydroxybenzaldehyde was recrystallized from ethanol to furnished light-brown, needled-shaped crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their displacement parameters were set to $1.5U_{eq}(O)$.

Figures

Fig. 1. Plot (Barbour, 2001) of the two independent molecules of 2,3,4-trihydroxybenzaldehyde with 50% probability ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius.

2,3,4-Trihydroxybenzaldehyde

Crystal data
$C_7H_6O_4$
$M_r = 154.12$
Monoclinic, Cc

 $F_{000} = 640$ $D_x = 1.584 \text{ Mg m}^{-3}$ Mo K α radiation

supplementary materials

Hall symbol: C c
a = 3.6222 (3) Å
b = 24.006 (2) Å
c = 14.8965 (9) Å
$\beta = 93.524 (5)^{\circ}$
V = 1292.9 (2) Å ³
Z = 8

Data collection

$\lambda = 0.71073 \text{ Å}$
Cell parameters from 446 reflections
$\theta = 2.8 - 19.5^{\circ}$
$\mu = 0.13 \text{ mm}^{-1}$
T = 100 (2) K
Needle, light brown
$0.30\times0.03\times0.03~mm$

Bruker SMART APEX diffractometer	1087 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.088$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 100(2) K	$\theta_{\min} = 1.7^{\circ}$
ω scans	$h = -4 \rightarrow 3$
Absorption correction: None	$k = -30 \rightarrow 30$
5464 measured reflections	$l = -19 \rightarrow 19$
1491 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_0^2) + (0.0467P)^2 + 2.3366P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
1491 reflections	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
217 parameters	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
8 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Friedel pairs were merged

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.5000 (11)	0.19999 (15)	0.5000 (3)	0.0203 (9)
O2	0.4561 (11)	0.18738 (14)	0.6744 (3)	0.0177 (9)
H2	0.432 (19)	0.172 (2)	0.6236 (19)	0.027*
O3	0.2999 (11)	0.23611 (14)	0.8356 (2)	0.0186 (9)
H3	0.253 (18)	0.2022 (8)	0.827 (4)	0.028*
O4	0.0704 (11)	0.34509 (15)	0.8358 (3)	0.0187 (9)
H4	0.046 (19)	0.324 (2)	0.879 (3)	0.028*
O5	1.4505 (11)	-0.00937 (16)	1.0289 (3)	0.0206 (9)

O6	1.1992 (11)	0.08512 (14)	0.9559 (2)	0.0195 (9)
Н6	1.297 (17)	0.062 (2)	0.993 (3)	0.029*
07	0.8968 (11)	0.13655 (14)	0.8094 (3)	0.0187 (9)
H7	0.801 (18)	0.142 (2)	0.7575 (19)	0.028*
08	0.7396 (10)	0.07867 (14)	0.6555 (2)	0.0172 (9)
H8	0.696 (19)	0.056 (2)	0.613 (3)	0.026*
C1	0.3888 (16)	0.2489 (2)	0.5099 (4)	0.0182 (12)
H1	0.3571	0.2717	0.4579	0.022*
C2	0.3068 (15)	0.2725 (2)	0.5942 (4)	0.0140 (11)
C3	0.3431 (15)	0.2416 (2)	0.6752 (4)	0.0148 (11)
C4	0.2636 (16)	0.2646 (2)	0.7557 (4)	0.0151 (12)
C5	0.1496 (15)	0.3204 (2)	0.7578 (4)	0.0153 (11)
C6	0.1124 (15)	0.3520 (2)	0.6789 (4)	0.0171 (12)
H6A	0.0328	0.3896	0.6812	0.021*
C7	0.1914 (16)	0.3285 (2)	0.5982 (4)	0.0184 (12)
H7A	0.1680	0.3501	0.5448	0.022*
C8	1.3595 (16)	-0.0319 (2)	0.9554 (4)	0.0182 (12)
H8A	1.4039	-0.0707	0.9498	0.022*
C9	1.1938 (15)	-0.0035 (2)	0.8791 (4)	0.0146 (11)
C10	1.1232 (16)	0.0546 (2)	0.8814 (4)	0.0150 (11)
C11	0.9686 (16)	0.08085 (19)	0.8055 (4)	0.0142 (11)
C12	0.8902 (15)	0.0499 (2)	0.7274 (3)	0.0142 (11)
C13	0.9584 (15)	-0.0072 (2)	0.7239 (4)	0.0160 (12)
H13	0.9043	-0.0276	0.6701	0.019*
C14	1.1054 (15)	-0.0333 (2)	0.7999 (4)	0.0167 (12)
H14	1.1480	-0.0723	0.7988	0.020*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
01	0.023 (2)	0.0189 (19)	0.019 (2)	0.0023 (16)	0.0050 (18)	-0.0053 (15)
O2	0.025 (2)	0.0122 (17)	0.015 (2)	0.0033 (16)	-0.0038 (18)	-0.0012 (15)
O3	0.032 (3)	0.0111 (17)	0.013 (2)	0.0021 (16)	0.0006 (18)	0.0028 (14)
O4	0.027 (2)	0.0147 (17)	0.015 (2)	0.0041 (17)	0.0023 (17)	-0.0010 (15)
O5	0.023 (2)	0.023 (2)	0.015 (2)	0.0024 (17)	-0.0034 (17)	0.0012 (16)
O6	0.032 (3)	0.0147 (18)	0.011 (2)	-0.0003 (16)	-0.0070 (18)	-0.0039 (15)
O7	0.029 (3)	0.0124 (16)	0.0140 (18)	0.0040 (16)	-0.0032 (17)	-0.0030 (15)
O8	0.023 (2)	0.0163 (18)	0.011 (2)	0.0023 (16)	-0.0065 (17)	-0.0020 (14)
C1	0.017 (3)	0.020 (3)	0.017 (3)	0.001 (2)	-0.005 (3)	0.003 (2)
C2	0.010 (3)	0.018 (2)	0.014 (3)	0.001 (2)	0.000 (2)	-0.003 (2)
C3	0.007 (3)	0.015 (2)	0.022 (3)	0.002 (2)	-0.002 (2)	-0.002 (2)
C4	0.016 (3)	0.014 (2)	0.015 (3)	0.001 (2)	-0.002 (2)	0.001 (2)
C5	0.011 (3)	0.017 (3)	0.019 (3)	-0.001 (2)	0.003 (2)	-0.001 (2)
C6	0.014 (3)	0.012 (2)	0.025 (3)	0.002 (2)	0.000 (3)	0.000 (2)
C7	0.021 (3)	0.017 (3)	0.017 (3)	0.002 (2)	-0.001 (3)	0.003 (2)
C8	0.014 (3)	0.019 (3)	0.022 (3)	0.000 (2)	0.002 (2)	0.006 (2)
C9	0.012 (3)	0.015 (2)	0.016 (3)	0.000 (2)	0.001 (2)	0.001 (2)
C10	0.011 (3)	0.021 (3)	0.014 (3)	-0.002 (2)	0.000 (2)	-0.004 (2)

supplementary materials

C11 C12	0.013 (3) 0.009 (3)	0.012 (2) 0.020 (2)	0.017 (3) 0.014 (3)	0.000 (2) 0.000 (2)	0.001 (2) 0.000 (2)	-0.005 (2) 0.003 (2)	
C13	0.013 (3)	0.020 (3)	0.014 (3)	0.000(2)	-0.002(2)	-0.004(2)	
C14	0.012 (3)	0.014 (3)	0.024 (3)	0.001 (2)	-0.001 (2)	0.000 (2)	
Geometric parameters (Å, °)							
O1—C1		1.253 (6)	C9	9—C10	1.4	421 (7)	
O2—C3		1.365 (6)	Cl	10—C11	1.3	382 (8)	
O3—C4		1.372 (6)	Cl	1—C12	1.3	395 (7)	
O4—C5		1.351 (6)	C1	12—C13	1.394 (7)		
O5—C8		1.248 (7)	C1	13—C14	1.3	372 (7)	
O6—C10		1.343 (6)	02	2—Н2	0.8	84 (1)	
O7—C11		1.364 (6)	03	3—Н3	0.8	84 (1)	
O8—C12		1.361 (6)	O4	4—H4	0.8	84 (1)	
C1—C2		1.426 (7)	Oe	б—Н6	0.8	84 (1)	
С2—С7		1.409 (7)	07	7—H7	0.8	84 (1)	
С2—С3		1.416 (7)	08	3—Н8	0.8	84 (1)	
C3—C4		1.367 (7)	Cl	I—H1	0.9	9500	
C4—C5		1.402 (7)	Ce	б—Н6А	0.9	9500	
C5—C6		1.398 (7)	C7	7—H7A	0.9	9500	
С6—С7		1.374 (7)	C8	3—H8A	0.9	9500	
С8—С9		1.425 (8)	Cl	I3—H13	0.9	9500	
C9—C14		1.398 (7)	Cl	l4—H14	0.9	9500	
С3—О2—Н2		114 (4)	Cl	10—C9—C8	12	1.1 (5)	
С4—О3—Н3		110 (5)	Oe	5—C10—C11	11	8.6 (4)	
С5—О4—Н4		116 (5)	Oe	5—C10—C9	12	1.9 (5)	
С10—О6—Н6		104 (4)	C1	1—C10—C9	11	9.5 (5)	
С11—О7—Н7		101 (4)	07	7—C11—C10	11	8.7 (5)	
С12—О8—Н8		108 (4)	07	7—C11—C12	12	1.9 (5)	
O1—C1—C2		124.2 (5)	Cl	10—C11—C12	11	9.4 (4)	
С7—С2—С3		118.4 (5)	08	3—C12—C13	12	2.3 (5)	
C7—C2—C1		119.7 (5)	08	3—C12—C11	11	5.9 (4)	
C3—C2—C1		121.9 (4)	Cl	13—C12—C11	12	1.9 (5)	
O2—C3—C4		118.2 (5)	Cl	14—C13—C12	11	8.6 (5)	
O2—C3—C2		120.4 (5)	Cl	13—C14—C9	12	1.3 (5)	
C4—C3—C2		121.5 (4)	01	I—С1—Н1	11	7.9	
C3—C4—O3		123.1 (4)	C2	2—С1—Н1	11	7.9	
C3—C4—C5		118.9 (5)	C7	7—С6—Н6А	12	0.1	
O3—C4—C5		118.0 (5)	C5	5—С6—Н6А	12	0.1	
O4—C5—C6		118.0 (5)	Ce	5—С7—Н7А	11	9.8	
O4—C5—C4		121.1 (5)	C2	2—С7—Н7А	11	9.8	
C6—C5—C4		120.9 (5)	05	5—С8—Н8А	11	7.6	
C7—C6—C5		119.9 (5)	C9	9—С8—Н8А	11	7.6	
С6—С7—С2		120.4 (5)	Cl	I4—C13—H13	12	0.7	
О5—С8—С9		124.7 (5)	Cl	12—C13—H13	12	0.7	
C14—C9—C10		119.4 (5)	Cl	13—C14—H14	11	9.3	
С14—С9—С8		119.5 (5)	C9	— С14—Н14	11	9.3	

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H…A
O2—H2…O1	0.84 (1)	1.99 (5)	2.631 (5)	133 (6)
O3—H3····O7 ⁱ	0.84 (1)	2.04 (3)	2.816 (5)	153 (6)
O4—H4···O1 ⁱⁱ	0.84 (1)	1.90 (3)	2.701 (5)	159 (6)
O6—H6…O5	0.84 (1)	1.87 (3)	2.653 (5)	154 (6)
O7—H7···O2	0.84 (1)	2.02 (3)	2.772 (5)	149 (6)
O8—H8···O5 ⁱⁱⁱ	0.84 (1)	1.86 (2)	2.679 (5)	162 (7)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*-1/2, -*y*+1/2, *z*+1/2; (iii) *x*-1, -*y*, *z*-1/2.

